Countable Powers of Compact Abelian Groups in the Uniform Topology and Cardinality of Their Dual Groups
نویسندگان
چکیده
منابع مشابه
On component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملBoolean Powers of Abelian Groups
where (f + g)(u) = V_,,+,,,f(v) A f(w). Since E is countable, ZcB) can be defined for any countably complete Boolean algebra (ccBa) B where Z is the group of the integers. This kind of group was first (1962) studied by Balcerzyk [l]. However, it seems that not much attention was paid to such groups for a rather long period. Under the point of view in [l, Theorem 51 and [13, Proposition 11, it c...
متن کاملHomotopy Groups of Compact Abelian Groups
Preliminaries. Bn (resp. 5„_i) will denote the subset of Rn consisting of those x such that ||x|| g 1 (resp. ¡|x|| = 1). x0 will denote the point (1, 0, 0, •• -, 0) of R" and T will denote Si made into a topological group by using complex multiplication. All groups will be assumed to be Abelian. For a based topological space X and a topological group G, let C(X, G) denote the set of maps (i.e.,...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2015
ISSN: 1072-3374,1573-8795
DOI: 10.1007/s10958-015-2603-2